Top Quarks, Light Gluinos, and Elements of Snuclear Physics

Lou Clavelli

U. of Alabama

GaryFest, 2010

Second City 1967

Can we make top

quarks at Fermilab?

Yes We Can!

G. Goldstein - Dalitz Memorial

CDF Top Analysis

double leptonic events: $M_t = 162 \pm 21 \pm 7 \text{ GeV}$ single leptonic events: $M_t = 176 \pm 4.4 \pm 4.8 \text{ GeV}$ hadronic events: $M_t = 187 \pm 8 \pm 12 \text{ GeV}$

Top Quark Analysis in the Light Gluino Scenario (LC+GG PR D58, 095012, 1998) Stop quark slightly above top can lead to the observed pattern.

An exact susy ground state in the string landscape?

vac energy density $\varepsilon = 3560 \text{ MeV/m}^3$

In dense matter $\epsilon \rightarrow \epsilon + \rho - \rho_s = \epsilon + \Delta \rho$

$$\frac{d^2 P}{dt d^3 r} = A_C \ e^{-\frac{27\pi^2 S^4}{2 \ \hbar \ c \ \epsilon^3}} \longrightarrow A_C \ e^{-\frac{27\pi^2 S^4}{2 \ \hbar \ c \ (\epsilon + \Delta \rho \ c^2)^3}}$$

Bose-Fermi degeneracy + pair conversion process \rightarrow significant energy release

Energy release in a transition to exact susy

$$\Delta \rho = \rho \frac{\Delta E}{A M_n c^2} = \frac{1}{2} \left(\left(\frac{2N}{A}\right)^{5/3} + \left(\frac{2Z}{A}\right)^{5/3} \right) \frac{3(9\pi)^{2/3}}{40} \frac{\hbar \rho}{M_n c R_0} \approx 0.02\rho$$

for comparison, standard hydrogen fusion into Helium: $\Delta \rho = .007 \rho$

standard triple alpha process: $\Delta \rho = 5.6 \cdot 10^{-4} \rho$

$$M(Z,A) = m_N N + m_P Z - a_V A + a_S A^{2/3} + a_C \frac{Z^2}{A^{1/3}} + a_A \frac{(N-Z)^2}{A} + \delta \frac{\cos(\pi Z)\cos^2(\pi A/2)}{\sqrt{A}}$$

An excellent fit to hundreds of nuclear masses is defined by the coefficients

- $a_V = 15.67 \, MeV$
- $a_S = 17.23 \, MeV$
- $a_C = 0.714 \, MeV$
- $a_A = 23.3 \, MeV$
- $\delta = -11.5 \, MeV$

Assume entire $(N - Z)^2$ term is due to Pauli Principle and therefore absent in a susy world.

Hydrogen	Z = 1	1 < A < 19
Helium	Z = 2	3 < <i>A</i> < 88
Lithium	Z = 3	8 < <i>A</i> < 243
Berylium	Z = 4	21 < <i>A</i> < 518
Boron	Z = 5	45 < <i>A</i> < 946
Carbon	Z = 6	82 < <i>A</i> < 1562
Nitrogen	Z = 7	136 < <i>A</i> < 2400
Oxygen	Z = 8	209 < <i>A</i> < 3494
Fluorine	Z = 9	304 < <i>A</i> < 4878

Atomic weights of the stable isotopes of low-lying elements in the exact susy limit of the MSSM. Elements up to He⁴ would have the same masses as in the standard model. Alternatively, assume there is a non-Pauli related $(N-Z)^2$ term and the Pauli related piece is as given by the Fermi gas model:

$$M(Z,A) = m_N N + m_P Z - \tilde{a}_V A + a_S A^{2/3} + a_C \frac{Z^2}{A^{1/3}} + \tilde{a}_A \frac{(N-Z)^2}{A} + \delta \frac{\cos(\pi Z)\cos^2(\pi A/2)}{\sqrt{A}} + E_P$$

The Pauli energy, E_P , in the Fermi gas model is

$$E_P = \frac{3 A (\hbar c)^2}{80 M_N R_0^2} (9\pi)^{2/3} \left[(2Z/A)^{5/3} + (2(A-Z)/A)^{5/3} \right]$$

= 20.0MeV $\frac{A}{2} \left[(2Z/A)^{5/3} + (2(A-Z)/A)^{5/3} \right]$
 $\approx A \cdot 20.0MeV + \frac{(Z-N)^2}{A} \cdot 11.5MeV + \dots$

$$\tilde{a}_V = a_V + 20.0 \, MeV = 35.6 \, MeV$$

 $\tilde{a}_A = a_A - 11.1 \, MeV = 12.2 \, MeV$

Discarding the δ term above its minimum and the E_P term, the suggested ground state mass for a susy nucleus of atomic number Z and atomic weight A is

$$M_{s}(Z,A) = m_{N}N + m_{P}Z - \tilde{a}_{V}A + a_{S}A^{2/3} + a_{C}\frac{Z^{2}}{A^{1/3}} + \tilde{a}_{A}\frac{(N-Z)^{2}}{A} - \frac{11.5 MeV}{A^{1/2}} .$$

Stable susy nuclei in the Z, A plane

Happy Birthday, Gary!

Happy Birthday, Gary!